翻訳と辞書
Words near each other
・ Tod und Teufel
・ Tod Williams
・ Tod Williams (filmmaker)
・ Tod Williams Billie Tsien Architects
・ Tod Wodicka
・ Tod's
・ Toda
・ Toda (surname)
・ Toda bracket
・ Toda Cura para Todo Mal
・ Toda field theory
・ Toda Katsushige
・ Toda Kazuaki
・ Toda la Vida y Otros Grandes Exitos
・ Toda language
Toda lattice
・ Toda Max
・ Toda Mujer
・ Toda of Pamplona
・ Toda oscillator
・ Toda people
・ Toda Racing
・ Toda Rowing Course
・ Toda Seigen
・ Toda Shinryuken Masamitsu
・ Toda Station
・ Toda Station (Aichi)
・ Toda Station (Saitama)
・ Toda Tadamasa
・ Toda Tadatō


Dictionary Lists
翻訳と辞書 辞書検索 [ 開発暫定版 ]
スポンサード リンク

Toda lattice : ウィキペディア英語版
Toda lattice
The Toda lattice, introduced by , is a simple model for a one-dimensional crystal
in solid state physics. It is given by a chain of particles with nearest neighbor interaction
described by the equations of motion
: \begin
\frac p(n,t) &= e^ - e^, \\
\frac q(n,t) &= p(n,t),
\end
where q(n,t) is the displacement of the n-th particle from its equilibrium position,
and p(n,t) is its momentum (mass m=1).
The Toda lattice is a prototypical example of a completely integrable system with soliton solutions. To see this one uses Flaschka's variables
: a(n,t) = \frac ^, \qquad b(n,t) = -\frac p(n,t)
such that the Toda lattice reads
: \begin
\dot(n,t) &= a(n,t) \Big(b(n+1,t)-b(n,t)\Big), \\
\dot(n,t) &= 2 \Big(a(n,t)^2-a(n-1,t)^2\Big).
\end
Then one can verify that the Toda lattice is equivalent to the Lax equation
:\frac L(t) = (L(t) )
where () = ''LP'' - ''PL'' is the commutator of two operators. The operators ''L'' and ''P'', the Lax pair, are linear operators in the Hilbert space of square summable sequences \ell^2(\mathbb) given by
: \begin
L(t) f(n) &= a(n,t) f(n+1) + a(n-1,t) f(n-1) + b(n,t) f(n), \\
P(t) f(n) &= a(n,t) f(n+1) - a(n-1,t) f(n-1).
\end
The matrix L(t) has the property that its eigenvalues are invariant in time. These eigenvalues constitute independent integrals of motion, therefore the Toda lattice is completely integrable.
In particular, the Toda lattice can be solved by virtue of the inverse scattering transform for the Jacobi operator ''L''. The main result implies that arbitrary (sufficiently fast) decaying initial conditions asymptotically for large ''t'' split into a sum of solitons and a decaying dispersive part.
==References==

*
*
*
*Integrable Hamiltonians with Exponential Potential, Eugene Gutkin, Physica 16D (1985) 398-404.
*
*

抄文引用元・出典: フリー百科事典『 ウィキペディア(Wikipedia)
ウィキペディアで「Toda lattice」の詳細全文を読む



スポンサード リンク
翻訳と辞書 : 翻訳のためのインターネットリソース

Copyright(C) kotoba.ne.jp 1997-2016. All Rights Reserved.